1. 清新电源首页
  2. 会议信息

新威独家冠名支持,福利大放送~7月4日石墨烯国际云论坛开播倒计时9天

新威独家冠名支持,福利大放送~7月4日石墨烯国际云论坛开播倒计时9天







2020深圳石墨烯国际云论坛

2020 International On-line Forum on Graphene in Shenzhen

2020年7月4日


会议介绍 Forum Introduction


原定于2020年4月8日-11日在深圳举办的2020第七届深圳国际石墨烯论坛,由于受全球新型冠状病毒感染肺炎疫情影响计划延期举办。为了保证深圳国际石墨烯论坛在2020年疫情期间继续发挥国际高端交流与合作的平台作用,计划于7月4日举办2020深圳石墨烯国际“云”论坛。

诺贝尔奖获得者、石墨烯发现人之一、英国皇家科学院院士、新加坡国立大学Kostya Novoselov教授,美国德雷克塞尔大学杰出教授、纳米技术研究所所长、ACS Nano杂志副主编Yury Gogotsi教授,英国剑桥大学Manish Chhowalla教授,中国科学院院士、美国物理学会会士、清华大学副校长薛其坤教授,中国科学院院士、全国政协常委、北京市政协副主席、北京石墨烯研究院(BGI)院长、中国化学会副理事长、北京大学刘忠范教授,中国科学院院士、英国皇家化学学会会士、北京石墨烯研究院(BGI)副院长、北京市低维碳材料工程技术研究中心主任、北京大学张锦教授,南京大学物理学院高力波教授等世界顶尖著名材料、物理和化学科学家确认出席此次云论坛并作精彩大会报告!一场科学分享与交流的饕餮盛宴,欢迎大家报名参加!

本次云论坛将继续围绕石墨烯、新型二维材料以及碳纳米材料,邀请来自全球知名学者和产业界人士,从学术和产业化视角探讨石墨烯及其它二维材料及碳材料的研究进展和产业化现状。为国内外杰出科学家与企业家搭建一个交流与合作平台,以推动世界范围内石墨烯等纳米材料的产业化进程。






主办单位

深圳市科技创新委员会

承办单位


清华大学深圳国际研究生院、中国科学院金属研究所、深圳盖姆石墨烯中心

协办单位

广东省石墨烯创新中心、先进电池材料产业集群、深圳市电源技术学会

独家冠名支持单位

深圳市新威尔电子有限公司

新威独家冠名支持,福利大放送~7月4日石墨烯国际云论坛开播倒计时9天


特别支持单位

永安市石墨和石墨烯产业园

新威独家冠名支持,福利大放送~7月4日石墨烯国际云论坛开播倒计时9天

深圳市科晶智达科技有限公司

新威独家冠名支持,福利大放送~7月4日石墨烯国际云论坛开播倒计时9天








会议主席/主持人 Chair

新威独家冠名支持,福利大放送~7月4日石墨烯国际云论坛开播倒计时9天

会议主题  Topic
  • 石墨烯等二维材料的制备  Preparation of graphene and 2D materials

  • 石墨烯等二维材料的器件应用  Device applications for graphene and 2D materials

  • 石墨烯等二维材料的能源应用  Energy applications for graphene and 2D materials

  • 石墨烯等二维材料的环境、健康应用  Environmental & health applications for graphene and 2D materials

  • 石墨烯的产业化发展  Industrial development of graphene

讲座时间  Time

7月4日 星期六 9:00~18:00


直播平台  Live Broadcast Platform



直播平台:新威研选App

新威独家冠名支持,福利大放送~7月4日石墨烯国际云论坛开播倒计时9天

新威独家冠名支持,福利大放送~7月4日石墨烯国际云论坛开播倒计时9天

直播送豪礼

新威独家冠名支持,福利大放送~7月4日石墨烯国际云论坛开播倒计时9天

直播平台:小鹅通知识铺(ID:先进电池材料产业集群大讲堂)

直播地址:

https://wx7ad069fa1b497829.h5.xiaoe-tech.com/content_page/eyJ0eXBlIjoiMiIsInJlc291cmNlX3R5cGUiOjQsInJlc291cmNlX2lkIjoibF81ZWRkYWIxN2VjZTFiX05oWndvTzBtIiwiYXBwX2lkIjoiYXBweWdVNHRIdnU0OTg0IiwicHJvZHVjdF9pZCI6IiJ9

直播间二维码

新威独家冠名支持,福利大放送~7月4日石墨烯国际云论坛开播倒计时9天

注册报名:参会费用500元/人


报名及缴费方式:

(一)小鹅通知识铺报名及付款

(二)表单报名及付款

(1)扫描以下二维码填写表单报名

新威独家冠名支持,福利大放送~7月4日石墨烯国际云论坛开播倒计时9天


(2)扫描下方二维码微信支付宝转账

新威独家冠名支持,福利大放送~7月4日石墨烯国际云论坛开播倒计时9天

付费时备注“石墨烯云论坛+付费人姓名+单位” 

优惠福利:转发此推文或宣传海报到朋友圈集赞50个,可优惠100元/人

3人组团参会可优惠100元/人

优惠可叠加!!!

报名咨询:张哲旭,18038109461,graphene@sz.tsinghua.edu.cn


会议联系人  Contacts

报名&招商&会务秘书:张哲旭,18038109461,graphene@sz.tsinghua.edu.cn


会议议程  Agenda



新威独家冠名支持,福利大放送~7月4日石墨烯国际云论坛开播倒计时9天

新威独家冠名支持,福利大放送~7月4日石墨烯国际云论坛开播倒计时9天







嘉宾简介





康斯坦丁·诺沃肖洛夫院士

新加坡国立大学

Prof. Konstantin Novoselov

National University of Singapore, Singapore


新威独家冠名支持,福利大放送~7月4日石墨烯国际云论坛开播倒计时9天

向下滑动查看个人简介和报告简介

个人简介:Dr. Kostya Novoselov is the Professor of Material Science & Engineering at National University of Singapore. He was awarded the Nobel Prize for Physics in 2010 for his achievements with graphene. He is best known for isolating graphene at The University of Manchester in 2004. He is an established physicist, specialising in the area of condensed matter physics, mesoscopic physics and nanotechnology. He has broad research interests from mesoscopic phenomena in ferromagnets and superconductors to electronic properties if two-dimensional (2D) electron gas in GaAs/AlGaAs heterostructures and graphene. He also has got a vast background in nanofabrication and nanotechnology.Novoselov has published over 350 papers (mainly as the leading or the corresponding author) with more than 25 papers in Nature and Science, more than 45 Nature Physics, Nature Materials, Nature Nanotechnology and Nature Communications papers and 16 Physical Review Letters. He was also named among the 17 hottest researchers world-wide – “individuals who have published the greatest number of hot papers during 2012-2013” Kostya Novoselov made into a shortlist of scientists with multiple hot papers for the years 2007-2008 (shared second place with 13 hot papers) and 2009 (5th place with 12 hot papers).


报告简介:When one writes by a pencil, thin flakes of graphite are left on a surface. Some of them are only one angstrom thick and can be viewed as individual atomic planes cleaved away from the bulk. This strictly two dimensional material called graphene was presumed not to exist in the free state and remained undiscovered until a few years ago. In fact, there exists a whole class of such two-dimensional crystals. The most amazing things about graphene probably is that its electrons move with little scattering over huge (submicron) distances as if they were completely insensitive to the environment only a couple of angstroms away. Moreover, whereas electronic properties of other materials are commonly described by quasiparticles that obey the Schrödinger equation, electron transport in graphene is different: It is governed by the Dirac equation so that charge carriers in graphene mimic relativistic particles with zero rest mass. The very unusual electronic properties of this material as well as the possibility for it’s chemical modification make graphene a promising candidate for future electronic applications.Probably the most important “property” of graphene is that it has opened a floodgate of experiments on many other 2D atomic crystals: BN, NbSe2, TaS2, MoS2, etc. One can use similar strategies to those applied to graphene and obtain new materials by mechanical or liquid phase exfoliation of layered materials or CVD growth. An alternative strategy to create new 2D crystals is to start with an existing one (like graphene) and use it as an atomic scaffolding to modify it by chemical means (graphane and fluorographene are good examples). The resulting pool of 2D crystals is huge, and they cover a massive range of properties: from the most insulating to the most conductive, from the strongest to the softest.If 2D materials provide a large range of different properties, sandwich structures made up of 2, 3, 4 … different layers of such materials can offer even greater scope. Since these 2D-based heterostructures can be tailored with atomic precision and individual layers of very different character can be combined together, – the properties of these structures can be tuned to study novel physical phenomena (Coulomb drag, Hostadter butterfly, metal-insulator transition, etc) or to fit an enormous range of possible applications, with the functionality of heterostructure stacks is “embedded” in their design (tunnelling or hot-electron transistors, photovoltaic devices).












莫纳什·乔瓦拉教授

英国剑桥大学

Prof. Manish Chhowalla

University of Cambridge, UK

新威独家冠名支持,福利大放送~7月4日石墨烯国际云论坛开播倒计时9天

向下滑动查看个人简介及报告简介

个人简介:Manish Chhowalla is the Goldsmiths’ Professor of Materials Science at the University of Cambridge. His research interests are in the fundamental studies of atomically thin two-dimensional transition metal dichalcogenides (TMDs). He has demonstrated that it is possible to induce phase transformations in atomically thin materials and utilize phases with disparate properties for field effect transistors, catalysis, and energy storage. Prof Chhowalla is a Fellow of the Materials Research Society, Institute of Physics and the Royal Society of Chemistry. He was the founding Editor in Chief of Applied Materials Today and is now the Associate Editor of ACS Nano. He has been on the Clarivate Highly Cited Researchers since 2016.

报告简介:The presence of off state current in bulk semiconductor devices is responsible for dissipation of substantial power, which is a function of the drive voltage and the leakage current. Decreasing the drive voltage to decrease the energy cost of transistors leads to substantial increase in the off state current (a decrease in voltage by 60mV leads a ten-fold increase in off state current). Novel device structures such as tunnel FETs (TFETs) coupled with negative capacitance gate electrodes could decrease the operating voltage and increase the on state current. 2D semiconductors are ideal materials for tunnel FETs but the lack of good n- and p-type contacts has hampered their progress. In this presentation, I will describe the realization of ultra-clean vdW contacts between 3D metals and single layer MoS2. Using scanning transmission electron microscopy (STEM) imaging, we show that the 3D metal and 2D MoS2 interface is atomically sharp with no detectable chemical interaction, suggesting van-der-Waals-type bonding between the metal and MoS2. We show that the contact resistance of indium electrodes is ~ 800 Ω-μm – amongst the lowest observed for metal electrodes on MoS2 and is translated into high performance FETs with mobility in excess of 160 cm2-V-s-1 at room temperature without encapsulation. We also demonstrate low contact resistance of 220 Ω-μm on 2D NbS2 and near ideal band offsets, indicative of defect free interfaces, in WS2 and WSe2. I will introduce 2D TMDs and their properties and then describe our efforts on making good contacts on 2D semiconductors. Finally, I will describe our recent collaboration on amorphous 2D materials for low dissipation interconnect materials.













尤里·高果奇教授

美国德雷克塞尔大学

Prof. Yury Gogotsi

Drexel University, USA

新威独家冠名支持,福利大放送~7月4日石墨烯国际云论坛开播倒计时9天

向下滑动查看个人简介及报告简介

个人简介:Dr. Yury Gogotsi is Distinguished University Professor and Charles T. and Ruth M. Bach Professor of Materials Science and Engineering at Drexel University. He also serves as Director of the A.J. Drexel Nanomaterials Institute. His research group works on 2D carbides, nanostructured carbons, and other nanomaterials for energy, water and biomedical applications. His work has been cited more than 100000 times and he is recognized as Highly Cited Researcher in Materials Science and Chemistry, and Citations Laureate by Thomson-Reuters/Clarivate Analytics. He has received numerous awards for his research including the Friendship Award from Chinese government, European Carbon Association Award, S. Somiya Award from the International Union of Materials Research Societies, Lee Hsun Award Lecture, Institute of Metal Research, CAS, Fred Kavli Distinguished Lectureship in Nanotechnology, MRS, Tsinghua Global Vision Lecture, Nano Energy award from Elsevier, International Nanotechnology Prize (RUSNANOPrize), R&D 100 Award from R&D Magazine (twice) and two Nano 50 Awards from NASA Nanotech Briefs, among many other. He has been elected a Fellow of the American Association for Advancement of Science (AAAS), Materials Research Society, American Ceramic Society, the Electrochemical Society, Royal Society of Chemistry, International Society of Electrochemistry, as well as Academician of the World Academy of Ceramics and Fellow of the European Academy of Sciences. He holds honorary doctorates from the National Technical University of Ukraine – Kyiv Polytechnic Institute, Frantsevich Institute for Problems of Materials Science, National Academy of Sciences, Ukraine, and Paul Sabatier University, Toulouse, France. He served on the MRS Board of Directors and is acting as Associate Editor of ACS Nano.


报告简介:2D materials with a thickness of a nanometer or less can be used as single sheets or as building blocks, due to their unique properties and ability to assemble into a variety of structures. Graphene is the best-known example, but numerous compounds, ranging from clays to BN and transition metal dichalcogenides, have been produced as 2D sheets. By combining various 2D materials, unique combinations of properties can be achieved which are not available in any bulk material. The family of 2D transition metal carbides and nitrides (MXenes) has been expanding rapidly since the discovery of Ti3C2 in 2011. Approximately 30 stoichiometric MXenes have been synthesized. Moreover, the availability of solid solutions on M and X sites, control of surface terminations, and the discovery of ordered double-M MXenes (e.g., Mo2TiC2) offer the potential for synthesis of dozens of new distinct structures. The versatile chemistry of the MXene family renders their properties tunable for a large variety of applications. Oxygen- or hydroxyl-terminated MXenes, such as Ti3C2O2, have been shown to have redox capable transition metals layers on the surface and offer a combination of high electronic conductivity with hydrophilicity, as well as fast ionic transport. This, among many other advantageous properties, makes the material family promising candidates for energy storage and related electrochemical applications, but applications in optoelectronics, plasmonics, electromagnetic interference shielding, electrocatalysis, medicine, sensors, water purification/ desalination and other fields are equally exciting. There are many applications in which MXenes outperform graphene (pseudocapacitors, EMI shielding, antennas, etc.). In some other areas, graphene may be a preferred or a less expensive solution (rGO). There are also situations when a MXene-rGO hybrid can perform better than those materials alone. This presentation will provide a comparison of properties and potential applications of MXenes and their hybrids in comparison to graphene-based materials.






薛其坤院士

清华大学

Prof. Qikun Xue

Tsinghua University, China

新威独家冠名支持,福利大放送~7月4日石墨烯国际云论坛开播倒计时9天

向下滑动查看个人简介及报告简介

个人简介:薛其坤教授,1984年毕业于山东大学光学系激光专业,1994年在中国科学院物理研究所获得博士学位。1992年至1999年先后在日本东北大学金属材料研究所和美国北卡莱罗纳州立大学物理系学习和工作。1999年至2005年任中国科学院物理研究所研究员,1999年至2005年任表面物理国家重点实验室主任。2005年起任清华大学物理系教授,同年11月被增选为中国科学院院士。2010年至2013年任清华大学理学院院长、物理系主任,2011年至2016年任低维量子物理国家重点实验室主任,2013年起任清华大学分管科研的副校长,2017年起任北京量子信息科学研究院院长。他是美国物理学会会士(2016),是国际著名期刊Surface Science Reports、Nano Letters、Applied Physics Letters、Journal of Applied Physics和 AIP Advances等的编委,National Science Review副主编和Surface Review & Letters主编。

薛其坤教授是国际著名的实验物理学家,其主要研究方向为扫描隧道显微学、分子束外延、拓扑绝缘量子态和高温超导电性等。发表学术论文500余篇,被引用超过21000次,在国际会议上应邀做大会/主题/特邀报告180余次。曾获何梁何利科学与技术进步奖(2006)、国家自然科学二等奖(2005、2011)、第三世界科学院物理奖(2010)、求是杰出科技成就集体奖(2011)、陈嘉庚科学奖(2012)、“万人计划”杰出人才(2013)、求是杰出科学家奖(2014)、何梁何利科学与技术成就奖(2014)、未来科学大奖-物质科学奖(2016)、国家自然科学一等奖(2018)和菲列兹•伦敦纪念奖(2020)等奖励与荣誉。


报告简介:We investigate the pairing mechanism of high Tc superconductivity in cuprates and iron-pnictides by using state-of-the-art molecular beam epitaxy (MBE)-scanning tunneling microscopy (STM), angle-resolved photoemission spectroscopy and Josephson tunneling experiment. By MBE growth, we are able to prepare superconducting CuO2 planes in BSCCO and LSCO and FeSe planes in Fe-based pnictides, which provides an unprecedented opportunity to investigate the pairing mechanism in well-controlled manner. We show that the pairing symmetry in both systems is rather conventional.

We investigate the pairing mechanism of high Tc superconductivity in cuprates and iron-pnictides by using state-of-the-art molecular beam epitaxy (MBE)-scanning tunneling microscopy (STM), angle-resolved photoemission spectroscopy and Josephson tunneling experiment. By MBE growth, we are able to prepare superconducting CuO2 planes in BSCCO and LSCO and FeSe planes in Fe-based pnictides, which provides an unprecedented opportunity to investigate the pairing mechanism in well-controlled manner. We show that the pairing symmetry in both systems is rather conventional.

We investigate the pairing mechanism of high Tc superconductivity in cuprates and iron-pnictides by using state-of-the-art molecular beam epitaxy (MBE)-scanning tunneling microscopy (STM), angle-resolved photoemission spectroscopy and Josephson tunneling experiment. By MBE growth, we are able to prepare superconducting CuO2 planes in BSCCO and LSCO and FeSe planes in Fe-based pnictides, which provides an unprecedented opportunity to investigate the pairing mechanism in well-controlled manner. We show that the pairing symmetry in both systems is rather conventional.

刘忠范院士

北京大学/北京石墨烯研究院

Prof. Zhongfan Liu

Peking University, China

新威独家冠名支持,福利大放送~7月4日石墨烯国际云论坛开播倒计时9天

向下滑动查看个人简介及报告简介

个人简介:刘忠范教授,九三学社中央副主席、北京市委主委;全国政协常委、北京市政协副主席。北京石墨烯研究院院长,北京大学博雅讲席教授,北京大学纳米科学与技术研究中心主任。中国化学会副理事长,中国国际科技促进会副会长。“物理化学学报”主编、“科学通报”副主编。

1983年毕业于长春工业大学,1984年留学日本,1990年获东京大学博士,1991-1993年东京大学和国立分子科学研究所博士后。1993年6月回北京大学任教,同年晋升教授。1993年获首批国家教委跨世纪优秀人才基金资助,1994年获首批基金委杰出青年科学基金资助,1999年受聘首批长江学者奖励计划特聘教授,2004年当选英国物理学会会士,2011年当选中国科学院院士,2013年首批入选中组部“万人计划”杰出人才,2014年当选英国皇家化学会会士,2015年当选发展中国家科学院院士,2016年当选中国微米纳米技术学会会士,2018年当选(香港)中国技术院院士。

主要从事纳米碳材料、二维原子晶体材料和纳米化学研究,发表学术论文600余篇,申请中国发明专利130余项。曾任国家攀登计划(B)、973计划、纳米重大研究计划项目首席科学家、国家自然科学基金“表界面纳米工程学”创新研究群体学术带头人(三期)。1992年获日中科技交流协会“有山兼孝纪念研究奖”、1997年获香港求是科技基金会杰出青年学者奖,2005年获中国分析测试协会科学技术奖一等奖,2007年获高等学校科学技术奖自然科学一等奖,2008年获国家自然科学二等奖、杨芙清王阳元院士优秀教学科研奖,2009年入选全国优秀博士学位论文指导教师,2012年获中国化学会-阿克苏诺贝尔化学奖、宝钢优秀教师特等奖,2016年获日本化学会胶体与界面化学年会Lectureship Award和北京大学方正教师特别奖,2017年获国家自然科学二等奖并获得“北京市优秀教师”称号,2018年获ACS NANO Lectureship Award。

报告简介:For graphene industry, mass production of high quality graphene itself is the starting point and finally determines its future. Since 2008, we have been focusing our emphasis on the chemical vapor deposition (CVD) growth of graphene materials. Our work follows two different lines, CVD growth of graphene on metals including Cu, Ni and Cu-Ni alloys, and direct growth on insulators including traditional glass and glass fibers. All the efforts are targeting commercial level mass production together with equipment design and manufacturing. Listed in the following are the current status of our CVD graphene research: (1) 4-6 inch single crystal graphene wafers on Cu(111) and Cu90Ni10(111)/sapphire, commercial batch production available in 10,000 wafers/year; (2) A3-size graphene films with mm single crystalline domains by static growth, commercially available in 10,000 m2/year; 3) A3-size superclean graphene films with CO2 post-etching technique, commercially available in 10,000 m2/year; 4) roll-to-roll graphene films with 20-micrometer single crystalline domains by dynamic growth technique, commercially available in 20,000 m2/year; 5) 30 x 30 cm2 super graphene glass, commercially available in 5000 m2/year; 6) graphene-coated glass fibers and fabrics by direct growth technique with a capacity of 5000 m2/year. All the CVD systems are home-built with scaling-up capacity for commercialization. The talk will give a brief overview of our over 10-year efforts from fundamentals to mass productions.

张锦院士

北京大学

Prof. Jin Zhang

Peking University, China

新威独家冠名支持,福利大放送~7月4日石墨烯国际云论坛开播倒计时9天

向下滑动查看个人简介及报告简介

个人简介:张锦,北京大学博雅讲席教授、中国科学院院士(2019)、国家杰出青年基金获得者(2007年)、教育部长江学者特聘教授(2013年)、英国皇家化学学会会士、中组部“万人计划”创新领军人才入选者、中国化学会纳米化学专业委员会副主任和科技部重点研发计划项目负责人。长期在纳米碳材料的物理化学领域开展研究工作,在Nature 和Nat. Mater.等刊物发表论文280余篇,授权专利30 余项。荣获国家自然科学奖二等奖(两项)、全国优秀博士学位论文指导教师、中国化学会青年化学奖和北京大学“十佳”导师等奖励。现任国家纳米科学中心副主任(兼)、北京石墨烯研究院副院长和北京市低维碳材料工程技术研究中心主任,兼任《Carbon》和《物理化学学报》等杂志的编委以及《Adv. Funct. Mater.》等杂志的顾问编委。

报告简介:Graphdiyne (GDY) is an ordered two-dimensional (2D) carbon allotrope comprising sp and sp2 hybridized carbon atoms with high degrees of π-conjugation, which features a natural bandgap and superior electric properties. However, the synthesis of well-defined GDY remains challenging due to the free rotation around alkyne-aryl single bonds and the lack of thickness control. Herein, we developed several rational approaches to synthesize high-quality structure-controlled GDY. Considering the intriguing physicochemical properties of GDY, it also shows promise in various applications, such as water splitting cell and solar steam generation.


高力波教授

南京大学

Prof. Libo Gao

Nanjing University, China

新威独家冠名支持,福利大放送~7月4日石墨烯国际云论坛开播倒计时9天

向下滑动查看个人简介及报告简介

个人简介:高力波,南京大学物理学院教授,2014年入选国家高层次青年人才,2016年入选江苏省双创人才,2019年入选江苏省杰青项目。2006年本科毕业于大连理工大学材料系;2011年博士毕业于中国科学院金属研究所,师从成会明院士;2011—2015年,新加坡国立大学石墨烯研究中心从事博士后研究,合作导师Loh Kian Ping。其研究经历一直从事石墨烯与其他二维材料的相关研究,主要为材料制备的新方法研究。曾以第一作者、通讯作者身份,发表Nature及子刊等多篇论文,迄今共发表SCI收录论文35篇,引用超过9000余次。


报告简介:Graphene films by chemical vapor deposition (CVD) draw much attention for the future applications with their extraordinary properties. However, wrinkles formed by the strong coupling to the growing substrates inevitably emerge and limit the large-scale homogeneity. Here, we develop CVD method to grow ultra-flat graphene films with wrinkle-free and quasi-suspending features. The formed wrinkles by traditional CVD can also be reduced by these processes, and some of them even disappear due to the decoupled van der Waals interactions and the probably increased surface distance. The ultra-flat graphene films show V-shape Dirac cone and linear dispersion at the atomic plane or across the atomic step, confirming their homogenous decoupling. The ultra-flatness of the graphene films ensures their surfaces easy-clean after wet transfer process, and a robust quantum Hall effect even appears in a device of 100 μm linewidth at room temperature. These CVD grown graphene films should retain their intrinsic extraordinary performances to large extent.


往届回顾

新威独家冠名支持,福利大放送~7月4日石墨烯国际云论坛开播倒计时9天

新威独家冠名支持,福利大放送~7月4日石墨烯国际云论坛开播倒计时9天

本站非明确注明的内容,皆来自转载,本文观点不代表清新电源立场。

发表评论

登录后才能评论