单线态裂分在太阳能电池中的应用研究进展与展望

近年来,太阳能电池得到了迅猛发展,光电转换效率大幅提高。然而,由于受到Shockley–Queisser定律限制,单层异质结太阳能电池的转化率上限约为33%。单线态裂分(Singlet Fission, SF)是指当一个有机半导体分子吸收一个光子产生单线态激子(singlet exciton)后,通过一个自旋允许的裂分过程形成两个三线态激子(triplet exciton),即吸收一个光子后可以产生两个三线态激子,如图1所示。研究表明,单线态裂分可以突破单层异质结太阳电池光电转换效率的SQ定律限制,因此受到人们的广泛关注。

单线态裂分在太阳能电池中的应用研究进展与展望

图1 单线态裂分的机理

最近,武汉理工大学夏建龙教授等对单线态裂分在太阳能电池中的应用及分子内单线态裂分的最新进展进行了综述,并指出现阶段提高效率所面临的挑战,并对该领域的进一步做出了展望。过去五年,基于SF的太阳能电池获得了较大的进展:将具有高效SF的并五苯(pentacene)用于制备的有机太阳能电池,获得的器件外量子效率(External Quantum Efficiency)首次超过100%;此外,将SF材料用于三层异质结的太阳能电池,SF材料的引入带来高的外量子效率和PCE的提升,如图2所示。也有文献报道了将可溶液加工的TIPS- pentacene用于太阳能电池器件,发现了单线态裂分使器件的内量子效率达到160%±40%,光电转化率达4.8%。

单线态裂分在太阳能电池中的应用研究进展与展望图2 单线态裂分材料在器件中的作用(Science 2013, 340, 334)

然而,目前应用在太阳能电池中的分子都是分子间单线态裂分,是在两个相邻分子间发生的,因此裂分效率易受到空间堆积和形貌的影响,不利于它在体相异质结太阳能电池中的实际应用。而分子内单线态裂分(intramolecular singlet fission,iSF),其单线态裂分发生在单个分子或单条聚合物链内,SF效率不受材料的空间堆积结构影响,文章详细总结了近年来iSF进展。

单线态裂分在太阳能电池中的应用研究进展与展望

图3 分子内单线态裂分的超快动力学

例如,利用瞬态吸收光谱等研究手段,研究人员发现了并苯二聚体类衍生物中iSF的超快动力学行为与分子能级结构的关系,如图3所示,以及通过在两个并苯之间桥接不同数量的苯环以调节iSF所产生的三重态激子对的寿命。目前已报道的能产生单线态裂分的共轭高分子体系,主要是分子内SF。如夏建龙教授与美国哥伦比亚大学的Luis M. Campos课题组和Brookhaven实验室的Matthew Y. Sfeir课题组合作,首次发现了给受体型共轭聚合物中非常高效的iSF,三线态产率达170%,如图4所示。

单线态裂分在太阳能电池中的应用研究进展与展望

图4 一种分子内单线态裂分材料的给受体结构

基于对单线态裂分的理解,作者认为目前基于SF材料的太阳能电池面临最大的挑战是单线态裂分的具体机理尚不十分清楚,已报到能生SF的材料较少,尤其是具有SF的高分子材料非常少,限制对了单线态裂分在太阳能电池中的应用研究。对于单线态裂分的机理与材料,未来还需要大量的研究来探索。相关工作近期发表在Advanced MaterialsDOI: 10.1002/adma.201601652)上。


猜你喜欢

高效率长期稳定的有机太阳能电池获新进展

高效率芳香稠环电子受体

利用压电光电子学效应显著增强基于无机核壳纳米阵列结构的柔性太阳能电池的性能

基于有机共晶的光伏器件-分子尺度 PN 结

太阳能电池Solar RRL:纳米晶杂化太阳能电池中氯离子提升电池性能的机理研究

Solar RRL:无电子选择层结构的高效钙钛矿太阳电池

(点击以上标题可以阅读原文)



单线态裂分在太阳能电池中的应用研究进展与展望

MaterialsViewsChina

官方微信平台

聚焦材料新鲜资讯

材料大牛VS新秀访谈
MVC论文排行榜每月新鲜出炉
热爱科研的你还在等什么,快加入我们一起微互动吧!!!


微信号:materialsviews

微博:materialsviews中国

欢迎个人转发和分享,刊物或媒体如需要转载,请联系:

materialsviewschina@wiley.com

关注材料科学前沿,请长按识别二维码

单线态裂分在太阳能电池中的应用研究进展与展望
点击左下角“阅读原文”,阅读Advanced  Materials原文

本站非明确注明的内容,皆来自转载,本文观点不代表清新电源立场。

(0)
清新电源清新电源
上一篇 2017年3月20日 上午1:00
下一篇 2017年3月22日 上午1:00

相关推荐

发表回复

登录后才能评论