高性能qPlus型原子力传感器:实现超乎想象的探测灵敏度

水的氢键构型对于理解水很多奇特的物理化学性质十分关键,但是水的氢键网络非常脆弱,很容易被外界所干扰,实验中如何实现水的非侵扰式探测是水科学领域的一个难题。最近,量子物质科学协同创新中心、北京大学量子材料科学中心的江颖课题组、王恩哥课题组和捷克科学院物理研究所Pavel Jelínek课题组合作,实现了表面水分子团簇的非侵扰式原子力显微镜成像,并揭示了一系列弱键合的亚稳态结构。相关研究工作于1月9日在线发表在Nature Communications(Nature Commun,2018,9,122. 影响因子IF=12.124)。

江颖课题组长期致力于超高分辨的扫描探针显微镜系统的研制和开发,近年来在表面水的结构和动力学研究中取得了国际领先的研究成果。然而,由于隧道电子的激发以及针尖-水分子之间的相互作用力,扫描探针不可避免地会对弱键合的水分子结构产生扰动。在这个工作中,江颖等发展了新一代基于qPlus的非接触原子力显微镜(nc-AFM)技术,自行制作了高性能qPlus型原子力传感器(图1),解决了AFM和STM双模式扫描的关键技术问题,实现了飞安级电流和皮牛级力信号的同时探测,将针尖-样品之间相互作用力的探测灵敏度推向了极限。

高性能qPlus型原子力传感器:实现超乎想象的探测灵敏度

图1:(a) qPlus型原子力传感器的实验装置图;(b) 具有电四极矩电荷分布的一氧化碳针尖与强极性水分子之间的高阶静电力。

高性能qPlus型原子力传感器:实现超乎想象的探测灵敏度

图2:各种亚稳态的水二聚体(a-d)和三聚体(e-h)的亚分子级分辨成像。AFM图中弯曲的暗环来源于水分子氢原子的静电势分布,据此可以确定氢原子的取向。

在此基础上,江颖等进一步利用一氧化碳分子对针尖进行化学修饰,调控针尖的电荷分布,通过探测电四极矩针尖与强极性水分子之间的微弱高阶静电力,获得了弱键合的水分子团簇甚至亚稳结构的亚分子级分辨成像,并在原子尺度上确定了其氢键构型和氢原子的位置(图2)。王恩哥、Pavel Jelínek等通过理论模拟,提出了AFM高分辨成像的新机制,揭示了针尖尖端的电荷分布在对极性分子成像中的关键角色。此工作中发展的非侵扰式成像技术突破了长期以来扫描探针显微镜在界面水研究中的瓶颈,打开了研究弱键合水体系(如:疏水界面、离子水合物、生物水等)的大门,具有非常广泛的应用前景。

该工作得到了国家杰出青年科学基金、国家自然科学基金委重点项目、国家重点研发计划项目的支持。江颖、王恩哥以及Pavel Jelínek为文章的共同通讯作者,彭金波、郭静和Prokop Hapala为文章的共同第一作者。

 

 

您可以通过以下方式引用和打开论文:

Peng J, Guo J, Hapala P, et al. Weakly perturbative imaging of interfacial water with submolecular resolution by atomic force microscopy[J]. Nature communications, 2018, 9(1): 122.

本文来自北京大学物理学院,转载旨在知识传播,本文观点不代表清新电源立场。 扫描页面右上角二维码关注微信公众号北京大学物理学院

(0)
minusonceminusonce编辑
上一篇 2018年1月16日 上午11:40
下一篇 2018年1月16日 上午11:50

相关推荐

发表回复

登录后才能评论