新型高储锂性能二维超薄材料:原子界面工程与电场效应

随着科技的快速发展,人们在便携式电子设备和电动交通领域的能源需求日益增长。高性能锂离子电池仍被视为解决这一问题最有前景的能源储存技术。而现有的商业化石墨负极已接近其能量密度极限,开发出高倍率容量和超长循环寿命的新型电极材料成为当前的迫切需求,也是促进锂离子电池应用于大规模储能系统中的关键一步。众所周知的是,材料的本征性质受到其维度,组成和原子排列等因素的重要影响。如何通过巧妙地设计策略系统优化以上要素来获得能够满足预期性能要求的电极材料极具挑战性。

二维超薄材料因其快速的迁移率,很高的表面积,较大的层间距和可调控的电子性等特性,在新型能源储存材料方面具有很好的应用潜力。目前制备二维超薄材料的主要途径是化学气相沉积或机械剥离法,但其较低的产量和复杂的过程严重制约了实际应用。而对于层间由非范德华力结合的多元复合材料,这些技术更是难以为继。研究表明多元复合材料因其各组分间的协同效应,通常表现出优于其二元单体材料的电化学活性。此外,原子界面作用对于材料的固有物理化学属性也有着较大影响,尤其是在原子层面的离子键合的异质界面,由于存在着很强的电子相互作用及能带结构变化,往往展现出优异的离子/电荷传输性能,从而提高其电化学性能。

新型高储锂性能二维超薄材料:原子界面工程与电场效应

基于以上考虑,澳大利亚伍伦贡大学(University of Wollongong)博士生郑洋周腾飞博士和郭再萍教授及其他合作者采用多级系统优化策略(维度,组成,原子界面作用等),巧妙合成出新型二维超薄复合材料。该材料显示出了高倍率容量和长循环寿命等优异的锂离子储存性质。研究人员结合多种技术手段深入探究了其良好电化学性能的内在原因。基于第一性原理的DFT计算结果表明,相比于体相材料,其优越的二维结构属性为锂离子的快速迁移提供了三维网络式的扩散通道,确保了材料的高比容量性能。此外,在二维超薄材料晶体结构中的异质界面间存在着层间电场作用,同时由二维材料表面的氧空位缺陷诱导产生了平面内局部微电场,这些电场作用显著促进了锂离子/电子的扩散速率,从而提高了材料的高倍率性能。原位同步辐射X射线粉末衍射技术则进一步揭示了其良好循环稳定性能的固有结构特性,其扭曲的共边八面体MoO6结构网络与三角双平面的BiO3结构之间存在着强烈的离子键合作用,为锂离子反复嵌入/脱嵌过程提供了优良的结构稳定性。这项研究工作不仅制备出了新型高性能二维超薄锂离子电极材料,并为开发出其他应用于能源储存与转换领域的复合型二维材料体系提供了新的思路。

该研究成果发表Advanced MaterialsDOI: 10.1002/adma.201700396)上。

猜你喜欢

相分离——核壳纳米纤维合成新策略:高容量和长寿命储锂的MoO2@C纳米纤维

激光烧蚀硅基多孔材料展现优秀储锂性能

生物矿化策略合成网状二氧化钛/石墨烯复合结构及其可逆的界面储锂性能

“盐焗法”制备具有优异储锂(钠)性能的Se/C复合材料

(点击以上标题可以阅读原文)



新型高储锂性能二维超薄材料:原子界面工程与电场效应

MaterialsViewsChina

官方微信平台

聚焦材料新鲜资讯

材料大牛VS新秀访谈
MVC论文排行榜每月新鲜出炉
热爱科研的你还在等什么,快加入我们一起微互动吧!!!


微信号:materialsviews

微博:materialsviews中国

欢迎个人转发和分享,刊物或媒体如需要转载,请联系:

materialsviewschina@wiley.com

关注材料科学前沿,请长按识别二维码

新型高储锂性能二维超薄材料:原子界面工程与电场效应
点击左下角“阅读原文”,阅读Advanced  Materials原文

本站非明确注明的内容,皆来自转载,本文观点不代表清新电源立场。

(0)
清新电源清新电源
上一篇 2017年7月16日 上午1:00
下一篇 2017年7月18日 上午1:00

相关推荐

发表回复

登录后才能评论