低碳三壳层超结构:具有抗粉化特性的高能量锂离子电池负极材料

锂离子电池作为目前主要的储能技术之一,为新兴的便携式电子设备和电动汽车提供主要动力。为了满足市场需求,开发兼具长循环寿命和高功率的高能量密度锂离子电池迫在眉睫。然而,锂离子电池负极尤其是高容量负极材料,在锂化/去锂化过程中伴随巨大体积膨胀/收缩变化,引起材料的严重粉碎,导致电池的不可逆容量损失,同时也使得电池在循环性能和倍率性能上的严重劣化。为了解决电极粉化的问题,当前大多数研究中都将机械性能优良、导电性好的石墨碳作为负极材料的柔性基体。但是,石墨碳(~372 mAh g-1)的理论容量较低,高含量碳的引入会大大降低电池容量和能量密度,从而极大地限制了其在电动汽车中的实际应用。因此,降低负极材料中的碳含量是提高能量密度的一个有效方法。然而,构筑低碳含量、同时具有抗粉化性能的负极材料极具挑战。

近期,同济大学杨金虎教授与复旦大学的彭慧胜教授设计了一种低碳SnO2三壳层结构作为具有抗粉化功能的电池负极材料,构建了具有高能量密度、长循环寿命和高功率的锂离子电池。

低碳三壳层超结构:具有抗粉化特性的高能量锂离子电池负极材料

研究者利用纳米组装技术,将多种纳米结构基元(纳米点,纳米棒)逐层组装形成低碳含量(4.83%)的SnO2三壳层中空结构和高含碳量(35.1%)的SnO2双壳层中空结构(上图)。发现低碳三壳层中空结构在嵌锂过程中可以承受高达约231.8%的巨大体积膨胀率,即使在1450次循环后仍然能输出高达1099 mAh g-1可逆比容量;而高碳双壳层结构在循环中会很快坍塌,性能大大衰减。原位透射电子显微镜表征和力学模拟表明,三壳层结构在锂化/去锂化锂时具有特殊的自协同结构保持机制,保护结构不会崩塌,并保证电极材料在长循环过程中的结构完整性。具体来说,外壳层在锂化过程中充分锂化,防止内壳层的过锂化和结构塌陷;反过来,在去锂化过程中,低锂化的内壳层作为坚固的内核,以支撑外壳层的巨大体积收缩应力,避免外壳层坍塌;同时,具有丰富孔隙的中间壳层在锂化和去锂化过程中提供足够的空间来适应外壳层的体积和应力变化。这项研究为开发实用、高能的锂离子电池开辟了新途径。

相关研究成果发表在Advanced MaterialsDOI: 10.1002/adma.201701494)上,论文第一作者为同济大学化学科学与工程博士生祖连海

猜你喜欢

首次应用于锂离子电池负极材料的Na-Mn-O纳米晶

碳基-金属氧化物和硫化物复合材料在高性能锂离子和钠离子电池负极中的设计策略

石墨化碳包覆SnOxSiO2的纳米电缆结构应用于高性能自支撑锂离子电池负极材料

新颖锂离子电池负极材料:超分子模板法原位构筑氮掺杂石墨烯

(点击以上标题可以阅读原文)



低碳三壳层超结构:具有抗粉化特性的高能量锂离子电池负极材料

MaterialsViewsChina

官方微信平台

聚焦材料新鲜资讯

材料大牛VS新秀访谈
MVC论文排行榜每月新鲜出炉
热爱科研的你还在等什么,快加入我们一起微互动吧!!!


微信号:materialsviews

微博:materialsviews中国

欢迎个人转发和分享,刊物或媒体如需要转载,请联系:

materialsviewschina@wiley.com

关注材料科学前沿,请长按识别二维码

低碳三壳层超结构:具有抗粉化特性的高能量锂离子电池负极材料
点击左下角“阅读原文”,阅读Advanced  Materials原文

本站非明确注明的内容,皆来自转载,本文观点不代表清新电源立场。

发表评论

登录后才能评论