1. 首页
  2. 计算干货
  3. MATLAB

帮你快速入门MATLAB(数值分析篇)

 

2.1 微分 

diff函数用以演算一函数的微分项,相关的函数语法有下列4个:  

diff(f) 传回f对预设独立变数的一次微分值  

diff(f,’t’) 传回f对独立变数t的一次微分值  

diff(f,n) 传回f对预设独立变数的n次微分值  

diff(f,’t’,n) 传回f对独立变数t的n次微分值  

    数值微分函数也是用diff,因此这个函数是靠输入的引数决定是以数值或是符号微分,如果引数为向量则执行数值微分,如果引数为符号表示式则执行符号微分。  

    先定义下列三个方程式,接著再演算其微分项:  

>>S1 = ‘6*x^3-4*x^2+b*x-5’;  

>>S2 = ‘sin(a)’;  

>>S3 = ‘(1 – t^3)/(1 + t^4)’;  

>>diff(S1)  

ans=18*x^2-8*x+b  

>>diff(S1,2)  

ans= 36*x-8  

>>diff(S1,’b’)  

ans= x  

>>diff(S2)  

ans=  

cos(a)  

>>diff(S3)  

ans=-3*t^2/(1+t^4)-4*(1-t^3)/(1+t^4)^2*t^3  

>>simplify(diff(S3))  

ans= t^2*(-3+t^4-4*t)/(1+t^4)^2 

2.2 积分 

 int函数用以演算一函数的积分项, 这个函数要找出一符号式 F 使得diff(F)=f。如果积

分式的解析式(analytical form, closed form) 不存在的话或是MATLAB无法找到,则int 传回原输入的符号式。相关的函数语法有下列 4个:  

int(f) 传回f对预设独立变数的积分值  

int(f,’t’) 传回f对独立变数t的积分值  

int(f,a,b) 传回f对预设独立变数的积分值,积分区间为[a,b],a和b为数值式  

int(f,’t’,a,b) 传回f对独立变数t的积分值,积分区间为[a,b],a和b为数值式  

int(f,’m’,’n’) 传回f对预设变数的积分值,积分区间为[m,n],m和n为符号式  

我们示范几个例子:  

>>S1 = ‘6*x^3-4*x^2+b*x-5’;  

>>S2 = ‘sin(a)’;  

>>S3 = ‘sqrt(x)’; 

>>int(S1)  

ans= 3/2*x^4-4/3*x^3+1/2*b*x^2-5*x  

>>int(S2)  

ans= -cos(a)  

>>int(S3)  

ans= 2/3*x^(3/2)  

>>int(S3,’a’,’b’)  

ans= 2/3*b^(3/2)- 2/3*a^(3/2)  

>>int(S3,0.5,0.6)   

ans= 2/25*15^(1/2)-1/6*2^(1/2)  

>>numeric(int(S3,0.5,0.6)) % 使用numeric函数可以计算积分的数值  

ans= 0.0741 

2.3 求解常微分方程式  

MATLAB解常微分方程式的语法是dsolve(‘equation’,’condition’),其中equation代表常微分方程式即y’=g(x,y),且须以Dy代表一阶微分项y’ D2y代表二阶微分项y” ,   

condition则为初始条件。     

假设有以下三个一阶常微分方程式和其初始条件     

y’=3×2, y(2)=0.5    

y’=2.x.cos(y)2, y(0)=0.25      

y’=3y+exp(2x), y(0)=3    

对应上述常微分方程式的符号运算式为:      

>>soln_1 = dsolve(‘Dy =3*x^2′,’y(2)=0.5’)      

ans= x^3-7.500000000000000     

>>ezplot(soln_1,[2,4]) % 看看这个函数的长相     

>>soln_2 = dsolve(‘Dy =2*x*cos(y)^2′,’y(0) = pi/4’)      

ans= atan(x^2+1)    

>>soln_3 = dsolve(‘Dy = 3*y +exp(2*x)’,’ y(0) = 3′)      

ans= -exp(2*x)+4*exp(3*x)   

2.4 非线性方程式的实根  

要求任一方程式的根有三步骤:   

先定义方程式。要注意必须将方程式安排成 f(x)=0 的形态,例如一方程式为sin(x)=3,

则该方程式应表示为f(x)=sin(x)-3。可以 m-file 定义方程式。  

    代入适当范围的 x, y(x) 值,将该函数的分布图画出,藉以了解该方程式的「长相」。 

    由图中决定y(x)在何处附近(x0)与 x 轴相交,以fzero的语法fzero(‘function’,x0)即可求出在 x0附近的根,其中 function 是先前已定义的函数名称。如果从函数分布图看出根不只一个,则须再代入另一个在根附近的 x0,再求出下一个根。  

    以下分别介绍几数个方程式,来说明如何求解它们的根。 

例一、方程式为  

   sin(x)=0  

    我们知道上式的根有 ,求根方式如下:  

>> r=fzero(‘sin’,3) % 因为sin(x)是内建函数,其名称为sin,因此无须定义它,选择 x=3 附近求根  

 r=3.1416  

>> r=fzero(‘sin’,6) % 选择 x=6 附近求根  

r = 6.2832 

例二、方程式为MATLAB 内建函数 humps,我们不须要知道这个方程式的形态为何,不过我们可以将它划出来,再找出根的位置。求根方式如下:  

>> x=linspace(-2,3);  

>> y=humps(x);  

>> plot(x,y), grid % 由图中可看出在0和1附近有二个根

帮你快速入门MATLAB(数值分析篇)

>> r=fzero(‘humps’,1.2)  

r = 1.2995 

例三、方程式为y=x.^3-2*x-5  

这个方程式其实是个多项式,我们说明除了用 roots 函数找出它的根外,也可以用这节介绍的方法求根,注意二者的解法及结果有所不同。求根方式如下:  

% m-function, f_1.m  

function y=f_1(x) % 定义 f_1.m 函数  

y=x.^3-2*x-5; 

>> x=linspace(-2,3);  

>> y=f_1(x);  

>> plot(x,y), grid % 由图中可看出在2和-1附近有二个根 

帮你快速入门MATLAB(数值分析篇)

 >> r=fzero(‘f_1’,2); % 决定在2附近的根  

r = 2.0946  

>> p=[1 0 -2 -5]  

>> r=roots(p) % 以求解多项式根方式验证  

r =  

2.0946  

-1.0473 + 1.1359i   

-1.0473 – 1.1359i   

2.5 线性代数方程(组)求解

我们习惯将上组方程式以矩阵方式表示如下  

AX=B  

其中 A 为等式左边各方程式的系数项,X 为欲求解的未知项,B 代表等式右边之已知项 

要解上述的联立方程式,我们可以利用矩阵左除 做运算,即是 X=AB。  

如果将原方程式改写成 XA=B 

其中 A 为等式左边各方程式的系数项,X 为欲求解的未知项,B 代表等式右边之已知项 

注意上式的 X, B 已改写成列向量,A其实是前一个方程式中 A 的转置矩阵。上式的 X 可以矩阵右除 / 求解,即是 X=B/A。  

若以反矩阵运算求解 AX=B, X=B,即是 X=inv(A)*B,或是改写成 XA=B, X=B,即是X=B*inv(A)。  

我们直接以下面的例子来说明这三个运算的用法:  

>> A=[3 2-1; -1 3 2; 1 -1 -1]; % 将等式的左边系数键入  

>> B=[10 5 -1]’; % 将等式右边之已知项键入,B要做转置  

>> X=AB % 先以左除运算求解  

X = % 注意X为行向量  

-2  

5  

6  

>> C=A*X % 验算解是否正确  

C = % C=B  

10  

5  

-1 

>> A=A’; % 将A先做转置  

>> B=[10 5 -1];  

>> X=B/A % 以右除运算求解的结果亦同  

X = % 注意X为列向量  

10 5  -1  

>> X=B*inv(A); % 也可以反矩阵运算求解

(来源:微信公众号赵越)

本站非明确注明的内容,皆来自转载,本文观点不代表清新电源立场。

发表评论

登录后才能评论

联系我们

0755-86936171

有事找我:点击这里给我发消息

邮件:zhangzhexu@v-suan.com

工作时间:周一至周五,9:30-18:30,节假日休息

QR code