图 2、Y SAs/NC的TEM图像(a)和AC-HAADF-STEM图像(b)。(c)放大AC-HAADF-STEM图像。(d)Y SAs/NC的EDS元素映射。(e)不同样品的Y K边X射线吸收近边结构(XANES)光谱和(f)傅里叶变换(FT)k3加权扩展X射线吸收精细结构(EXAFS)光谱。(g)Y SAs/NC的EXAFS拟合图。(h-j)Y SAs/NC、Y2O3和Y箔的小波变换-EXAFS(WT-EXAFS)图。进行了软X射线吸收近边结构(XANES)测量,以确定Y SAs/NC中N和C的电子结构。Y K边XANES谱的阈值能量位于Y箔和Y2O3的阈值能量之间(图2e),说明Y在Y SAs/NC中的平均氧化态约为2.31。图2f中Y SAs/NC的FT-EXAFS分析显示,在1.71 Å附近有一个主峰,这是由于第一壳层Y-N路径的散射。此外,与Y箔相比,Y SAs/NC中未检测到主峰在3.28 Å左右的Y-Y键,说明Y原子分散在碳基体上,具有Y-N配位。Y SAs/NC的配位构型为一个完美平面YN4配位,如图2g所示。此外,在k和R空间中进行了高分辨率的小波变换EXAFS(WT-EXAFS),以识别Y SAs/NC中Y物种的原子分散状态。如图2h–j所示,Y SAs/NC的WT计数曲线在3.9°-1左右出现最大信号,位于Y箔(Y–Y,6.8°-1)和Y2O3(Y–O,4.3°-1)之间,表明Y–N键在Y SAs/NC中占主导地位。图3a 显示,在1.0 mA cm-2@1.0 mAh cm-2下,Y SAs/NC能够循环400次,具有稳定的库仑效率(CE),超过99%。而NC和裸Cu的CE波动较大,这主要是由于Na金属负极表面沉积了Na枝晶或死Na。图3b显示,Y SAs/NC-Na在三个电极中极化最小。在1.0 mA cm-2@1.0 mAh cm-2下,Y SAs/NC的成核过电位低至22.4 mV,低于NC(32.9 mV)和Cu(48.4 mV)电极的成核过电位,表明Y SAs/NC具有良好的亲钠性,能够实现均匀的Na沉积动力学。
图 3、(a)1.0 mA cm-2@1.0 mAh cm-2下,不同电极的库仑效率和(b)电压分布。(c)Y SAs/NC-Na|Y SAs/NC-Na和NC-Na|NC-Na对称电池倍率性能。(d)Y SAs/NC-Na和NC-Na对称电池长循环稳定性。(e)循环后的NC-Na和Y SAs/NC-Na负极SEM图像。(f)Na在NC和Y SAs/NC电极上的电镀行为示意图。图3c显示,Y SAs/NC-Na电极表现出稳定的倍率性能和较低的极化,而在5 mA cm-2时,NC-Na对称电池产生了巨大的电压波动。图3d显示,在3 mA cm-2@3 mAh cm-2下,Y SAs/NC-Na电极能够稳定循环1500 h,而NC-Na电极只能循环小于550 h(图3d)。图3e显示,在3 mA cm-2@3 mAh cm-2循环后,NC-Na电极形成了明显的“空腔”和Na枝晶。而Y SAs/NC没有观察到Na枝晶。图3f显示,金属Na以均匀颗粒的形式沉积在Y SAs/NC-Na复合材料上,这得益于YN4位点的调节作用。图4a的循环伏安(CV)曲线显示,Y SAs/NC-S正极有两个清晰的阴极峰,对应于固态硫还原为可溶的长链NaPS(Na2Sx, 4<x<8,峰a在1.56V处)和随后向不溶性Na2S2/Na2S的转化(峰b在1.11 V处)。阳极峰(峰c在1.86 V处)对应Na2S到NaPS的转化。Y SAs/NC-S的阳极和第二个阴极峰之间的电压差为0.26 V,明显低于NC-S的0.34 V极化,表明YN4基团抑制了电化学极化,改善了转化动力学。
图 5、(a)Y SAs/NC-S||Y SAs/NC-Na全电池示意图。(b)Y SAs/NC-S||Y SAs/NC-Na, Y SAs/NC-S||Na和NC-S||Na全电池倍率性能。(c)在5 A g-1下,不同全电池的长循环稳定性。(d)Y SAs/NC-S||Y SAs/NC-Na全电池与3D打印Y SAs/NC-S||Y SAs/NC-Na全电池循环性能的比较。(e)具有Y SAs/NC-S正极的柔性Na-S软包电池示意图。(f)Na-S软包电池在0.2 A g-1下的循环性能。(g)Y SAs/NC-S||Y SAs/NC Na电池与一些最先进的Na-S体系的比较。此外,Y SAs/NC-S||Y SAs/NC Na全电池在0.2 A g–1下可提供787 mAh g–1的容量(图5d)。载量为3.1和6.5 mg cm–2的3D打印全电池在0.2 A g–1下第五次循环容量分别为656和522 mAh g–1。即使在0.2 A g–1下,6.5 mg cm–2硫载量的全电池进行200次循环后,仍能保持近100%的库伦效率,且每个循环的衰减率低,为0.33%(图5d)。此外,还组装了一个Y SAs/NC-S软包电池(图5e)。将软包电池载量增加至∼80 mg(对应∼2.3 mg cm–2)。图5f显示,在0.2 A g–1下,组装后的电池容量高达500 mAh g–1。图5g显示,Y SAs/NC-S||Y SAs/NC Na性能优于一些最先进的Na–S体系。5总结与展望本工作设计了基于Y SAs/NC-S正极和Y SAs/NC-Na负极的新型Na-S全电池。理论预测表明,YN4/C具有优化的电荷结构和可调的电子局域化特征,可以促进均匀的Na沉积,防止枝晶生长,加速NaPS转换,降低Na2S分解能垒。Y SAs/NC作为同时调节S正极和Na负极的Janus功能宿主,对促进S氧化还原反应动力学和抑制多硫化物穿梭过程具有协同作用,抑制了Na枝晶生长。构建的Y SAs/NC-S||Y SAs/NC-Na全电池在0.1 A g-1下具有822 mAh g-1的容量。此外,采用Y SAs/NC-S正极的软包电池在0.2 A g-1下具有500 mAh g-1的高面积容量,证明了其在柔性Na-S电池中的实际应用前景。本工作为制备高性能Na-S全电池提供一种实用的策略。6文献链接Single-Atom Yttrium Engineering Janus Electrode for Rechargeable Na–S Batteries. (Journal of the American Chemical Society, 2022, DOI:10.1021/jacs.2c07655)原文链接:https://doi.org/10.1021/jacs.2c07655 清新电源投稿通道(Scan)