1. 清新电源首页
  2. 学术动态

高镍三元前驱体制备过程中的影响因素

高镍三元前驱体制备过程中的影响因素

三元材料镍钴锰(NCM),具有高比容量、长循环寿命、低毒和廉价的特点。此外,三种元素之间具有良好的协同效应,因此受到了广泛的应用。

NCM 中,镍是主要的氧化还原反应元素,因此,提高镍含量可以有效提高NCM 的比容量。高镍含量NCM材料(Ni的摩尔分数≥0.6)具有高比容量和低成本的特点,但也存在容量保持率低,热稳定性能差等缺陷。高镍 NCM 材料的性能和结构与前驱体的制备工艺紧密相关,不同的条件直接影响产品的最终结构和性能。

高镍三元前驱体制备过程中的影响因素

图1:Li[NixCoyMnz]O2(NCM,x=1/3, 0.5, 0.6, 0.7, 0.8, 0.85)的放电容量、热稳定性和容量保持率关系图

制备工艺条件对高镍前驱体物化性能的影响

高镍三元前驱体主要的制备工艺条件有:氨水浓度、pH值、反应温度、固含量、反应时间、成分含量、杂质、流量、反应气氛、搅拌强度等。

高镍三元前驱体制备过程中的影响因素

图2:三元前驱体的生产工艺流程图

氨浓度对高镍前驱体物化性能影响

氨水是反应络合剂,主要作用是络合金属离子,达到控制游离金属离子目的,降低体系过饱和系数,从而实现控制颗粒长大速度和形貌。所以制备不同组成的三元前驱体,所需的氨水浓度也不同。

高镍三元前驱体制备过程中的影响因素

图3:不同氨浓度高镍前驱体产品的SEM图(左:氨含量:2g/L,右:氨含量:7g/L)

从上图可以看出氨浓度较低时颗粒形貌疏松多孔,致密性差,而较高的氨浓度得到的前驱体颗粒致密。但是络合剂的用量也不是越多越好,络合剂用量过多时,溶液中被络合的镍钴离子太多,会造成反应不完全,使前驱体的镍、钴、锰的比例偏离设计值,而且被络合的金属离子会随上清液排走,造成浪费,给后续废水处理造成更大的困难。综上,氨浓度需控制在5~9g/L。

沉淀pH对高镍前驱体影响
沉淀过程中的pH直接影响晶体颗粒的生成、长大。

高镍三元前驱体制备过程中的影响因素

图4:pH对前驱体形貌的影响

由于镍、钴、锰的沉淀pH值不同,所以不同组分的三元材料前驱体的最佳反应pH值不同。

高镍三元前驱体制备过程中的影响因素

图5:不同组分前驱体的适宜氨水浓度和pH值

随着沉淀pH值升高,一次粒子逐渐细化,颗粒球形度变好,前驱体样品振实密度逐步升高。

高镍三元前驱体制备过程中的影响因素

图6:pH对前驱体振实密度的影响

综上,需根据实际生产工艺的需求选取合适的沉淀pH值,不可过高,也不可过低。

沉淀温度对高镍前驱体物化性能影响

温度主要是影响化学反应速率。在前驱体的反应中,温度越高反应速率越快,但是温度过高会造成前驱体氧化,进而造成反应过程无法控制、前驱体结构改变等问题,所以在不影响反应的前提下温度尽量高一点。在反应过程中pH会随着温度的降低而升高,所以维持温度的恒定也很重要。

高镍三元前驱体制备过程中的影响因素

图7:温度与高镍前驱体形貌关系(左:反应温度50℃,右:反应温度60℃)

固含量对高镍前驱体物化性能影响

这里的固含量是指在前驱体反应过程中,前驱体浆料的固体质量和液体质量的比值。适当提高料浆固含量可优化产品形貌、提高产品的振实密度。

高镍三元前驱体制备过程中的影响因素

图8:不同固含量条件下生产高镍811前驱体SEM(左:固含量低,右:固含量高)

从上图可以看出高固含量下制备得到高镍前驱体,颗粒致密性好,球形度更好,粒度分布更为集中,一次粒子晶界模糊。

搅拌速度对高镍前驱体物化性能影响
搅拌速度对晶体结晶过程影响较大,从而影响前驱体的振实密度。

高镍三元前驱体制备过程中的影响因素

图9:搅拌转速与振实密度关系图

从上图可以看出随着搅拌转速的升高,高镍前驱体的振实密度逐渐增大,在搅拌转速>300rpm后,振实密度趋于稳定,所以反应釜体系搅拌转速控制300~360rpm之间较为合适。

杂质对高镍前驱体物化性能影响

在实际生产过程中,少量的有机溶剂会对共沉淀反应造成很大困扰,而镍钴锰原料提纯过程中会用到有机溶剂,少量的有机溶剂会带到前驱体的反应中。

料液油分越高,振实密度越低,前驱体的形貌变得疏松,无法成球,造成颗粒无法生长,粒度分布宽化。

高镍三元前驱体制备过程中的影响因素

图10:料液对高镍前驱体形貌影响,沉淀时间36h(左:油分为9.5ppm,右:油分为2ppm)

研究结果表明,若得到高振实高镍前驱体,料液油分控制必须≤5ppm。

小结

目前国内各大车企与电池厂商争相迈向高镍之路,此前报道宁德时代预计明年将推出高镍三元811电池。钴价的持续上涨削弱了电池企业的盈利能力,而 NCM811 的钴分子含量为 6.06%,仅为NCM523 和 NCM622一半左右。因此,NCM811 单吨对应钴的用量下降50%左右。但是高镍三元材料的技术难题一直是阻挡其发展的重要问题,未来还需要继续针对高镍三元材料的性能,尤其是安全性能做大量研究。

参考文献

马跃飞. 高镍多元前驱体的制备与研究[J]. 当代化工研究,2018(03):45-47.


深圳市新创材料科技有限公司创建于广东深圳大鹏新区葵涌街道国际生物谷生命科学产业园内,公司董事长兼总经理是国内首次实现三元正极材料产业化的王伟东博士主编撰写了《锂离子电池三元材料——工艺技术及生产应用》一书,公司内还有多位致力于三元正极材料及其前驱体行业的工程师,具有十多年三元正极材料及其前驱体的研发、中试线设计及实验的技术积累,自主开发出如NCM5系、NCM6系、NCA等多款优异的三元正极材料及其前驱体,也具有2000吨/年、5000吨/年、10000吨/年三元正极材料及其前驱体的产线设计、产线改造和生产项目经验。公司研究院占地2000多平方米,研究院配备有非常齐全三元前驱体和三元正极材料研发、检测设备,研发设备如50L前驱体反应釜、管式炉、罩式炉、10米辊道窑、高混机、气流磨、机械磨等,检测设备如ICP-AES、SEM、XRD、差热分析仪、手套箱、扣电测试系统等,所有设备均为国内外知名品牌,可进行一整套三元前驱体及三元正极材料制备的小试、中试

 

深圳市新创材料科技有限公司联合深圳市清新电源研究院共同主办三元正极材料暨前驱体制备技术及生产应用第一期理论+实操培训班。

 

本次培训班课程分《三元正极材料制备技术及生产应用》和《三元前驱体制备技术及生产应用》两个部分,《三元正极材料制备技术及生产应用》课程内容包含三元正极材料的制备流程、设备、制备原理、控制参数分析、测试讲解及10g级、公斤级三元正极材料制备实操;《三元前驱体制备技术及生产应用》课程内容包含三元前驱体的制备流程、设备、制备原理、控制参数分析、测试讲解及公斤级前驱体制制备实操。

培训内容及报名链接


三元正极材料暨前驱体制备技术及生产应用培训班

本文转载自 锂电派。

供稿丨深圳市清新电源研究院

部门丨媒体信息中心科技情报部

撰稿人丨锂电派

主编丨张哲旭


高镍三元前驱体制备过程中的影响因素

清新电源投稿通道(Scan)


高镍三元前驱体制备过程中的影响因素

本站非明确注明的内容,皆来自转载,本文观点不代表清新电源立场。

发表评论

登录后才能评论